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Abstract—Geoscientists can use field robots to explore ongoing
global changes like desertification, the process whereby fertile
lands change to desert. High spatiotemporal resolution data
collected by robots can inform understanding of the complex
causes of desertification, critical to preventing additional land
loss and protecting biodiversity. A key challenge in developing
more intelligent robots, that move beyond mobile data collection
devices and begin to aid human experts with sampling decisions,
is the lack of understanding of how scientists make such decisions
and adapt strategies when presented with new information.

In this study we examined the dynamic data collection
decisions of 108 expert geoscientists using a simulated field
scenario. Human data collection behaviors suggested two distinct
objectives: an objective to improve information coverage, and an
objective to verify beliefs about the hypothesis. We developed
a highly-simplified quantitative decision model that allows the
robot to predict potential human data collection locations based
on the two observed human data collection objectives. Predictions
from the simple model successfully captured sampling location
choices for 70% of human expert scientists, and revealed a
transition in objectives as the level of information increased. The
findings will enable decision support algorithms that allow robotic
teammates to infer experts’ desired data collection strategy based
on abstract scientific objectives, in the long-term supporting the
development of cognitively-compatible robotic field assistants.

I. USING ROBOTS TO STUDY DESERTIFICATION AND
GLOBAL CLIMATE INTERACTIONS

Arid, semi-arid, and dry sub-humid areas – covering 46.2%
of the global land area and home to approximately 3 billion
people – are vulnerable to land degradation in the form of de-
clines in soil quality, vegetation, water, or wildlife, collectively
referred to as desertification [1], [2]. Anthropogenic climate
change, in interaction with human activities like unsustainable
land management practices, has exacerbated desertification in
some dryland areas and risks from desertification are projected
to increase with continued global warming [1]. Scientists are
deploying robotic technology in desertification research to
understand complex and rapidly changing sediment dynamics
in-situ. For example, in prior work, we deployed a legged
robot, RHex [3], to assist human geoscientists in field data
collection across deserts in NM and CA [4], to reveal how
environmental properties such as soil strength and vegeta-
tion density influence sediment transport and desertification
processes. The robot provided human geoscientists with high
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spatiotemporal resolution data on leg-soil interactions in-situ,
bringing the precision of laboratory experimentation to the
field [4]–[6]. Access to this data allowed scientists to test
hypotheses about soil strength in the field, update their beliefs,
and dynamically adapt their data collection strategies to enable
important scientific discoveries [7].

II. MOVING ROBOT FIELD ASSISTANTS TOWARDS MORE
INTELLIGENT TEAMMATES

Most state-of-the-art robots assisting in data collection –
including the robot RHex used in our research [4], [7] –
are used as mobile sensor suites, taking low-level command
from humans to execute the navigation, sensing and sampling,
while human experts bear the full burden of integrating and
interpreting data for future data collection decision making.
When this burden exceeds the processing capacity of the
human mind, experts are likely to rely on mental shortcuts and
rules-of-thumb (heuristics) [8], [9] and have trouble flexibly
adapting thinking and behavior in response to new information
[10]; leaving scientists vulnerable to decision biases that can
result in missed scientific discoveries [11].

For robots to move beyond mobile sensor suites and begin
to assist human scientists with high-level decision-making
and sampling strategy adaptations, a better understanding of
how scientists make data collection decisions is essential. By
understanding 1) what the most important objectives that influ-
ence experts’ data collection strategy are, and 2) how experts
combine different objectives to select and adapt strategies in
response to new data, a robot could begin to suggest sampling
locations based on inferred combinations of objectives and
then learn from human responses. In this manner, robots
can become more intelligent teammates that can can take on
increased responsibility in collaborative exploration, thereby
freeing up the expert to engage in the type of abstract
hypothetical thinking that the human mind excels at [12].

III. ASSESSING EXPERT SCIENTIST DATA COLLECTION
BEHAVIOR IN SIMULATION

Here, we use a simulated data collection scenario to de-
termine how expert geoscientists make spatiotemporal data
collection decisions, and how search is adapted in response to
real-time data (Fig. 1). The simulated data collection scenario
is inspired from the real-world field data collection process
in [5]. In the task, participants are provided with a hypothesis
about the relationship between sediment strength and moisture
along a sand dune (Fig. 1, HA1), and asked to create a
data collection strategy to test the hypothesis – a simulated



Fig. 1: Robot-aided in-situ sampling [5] inspired decision-making scenario. (A) Field sampling site at White Sands, NM, a
dune field in the southwest of United States (i), where the RHex [3] robot (ii) assisted human scientists collect soil property
measurements [4], [5] along a sand dune. Black line highlights the transect of a dune where we observe the largest gradient
in soil properties (iii). At the crest of the dune, where the soil was driest because of its distance from the groundwater table
(orange line), soil strength was expected to be low. As moisture increased on the stoss face moving towards the interdune,
strength was expected to also increase before leveling of at the point of moisture saturation. This pattern of expected results,
HA1, is displayed in blue and is provided to participants in the simulated scenario. Through field work, geoscientists discovered
that soil strength actually increases rapidly to its maximum as soil becomes slightly wet, and then decreases slightly as soil
moisture becomes more saturated nearing the interdune area just before leveling off [5]. This alternative pattern of results, HA2,
is displayed in green. Participants in the simulated scenario were randomly assigned to sample from data sets supporting HA1

or HA2. (B) The interactive data collection page of the web-based decision-making scenario (user/password: rhex), which was
inspired from the robot-assisted field data collection scenario. Expert geoscientist participants select data collection locations
on dune cross-section and measurements are provided in real-time.

robot executes the strategy and provides real-time data that
participants can use to adapt their strategy. Previous work
with an older version of the task showed expert geoscientists
rely on simple data collection heuristics of equally spacing
sampling locations and taking a consistent “magic” number of
measurements at each location [7]. Using an updated version
of the task, the current study sought to determine the objectives
underlying these heuristics, and how changes in hypothesis
beliefs (measured by subjective confidence) alter the weighting
of objectives and corresponding data collection decisions.

IV. EXPERTS’ INITIAL SAMPLING STRATEGY IS
EXPLORATION ORIENTED AND HEURISTIC DRIVEN

We replicated equal spacing and magic number heuristics
amongst a new group of 108 expert geoscientists: 94% of
participants chose uniform location intervals (Fig. 2 A), and
85% of participants chose a constant number of samples at
each location (Fig. 2 B). Furthermore, we found that the
majority (60%) of the participants chose a constant number
of samples, n ∈ [3, 6], and uniform intervals, ∆l ∈ [2, 4]. We
propose two hypotheses to explain the observed heuristics: (i) a
diminished information reward hypothesis to explain the magic
number heuristic, and (ii) an information inference hypothesis
to explain the equal spacing heuristic.

(i) Diminished information hypothesis. We hypothesize that
with an increasing number of samples from the same location,
the amount of new information decreases (Fig. 2 C, slope of
the blue curve), while the cost to obtain each sample stays

constant (Fig. 2 C, slope of the red curve). As a result, the
net information reward (i.e., new information minus sampling
cost) is the highest for the first few samples, and decreases
with continued sampling at the same location (Fig. 2 C, yellow
curve). We posit that the observed magic number between 3-6
(Fig. 2 A) allows experts to efficiently increase information
coverage at each sampling location.

(ii) Information inference hypothesis. We hypothesize that
experts could obtain information about a location by either
direct sampling at the location, or inferring information in-
directly from a nearby sampled locations. As a result, the
net information reward (Fig. 2 D, yellow) exhibits a non-
monotonic trend with location interval: when sampling too
densely (Fig. 2 D, small interval), the amount of information
(Fig. 2 D, blue) is sufficiently large, but the total sampling
cost (Fig. 2 D, red) is also high, resulting in a reduced net
reward (Fig. 2 D, yellow); on the other hand, when sampling
too sparsely (Fig. 2 D, large interval), the indirect information
that can be inferred from each sampled location is too small,
resulting in a much smaller total information (Fig. 2 D, blue),
and consequently a smaller net reward (Fig. 2 D, yellow) as
well. Therefore, the observed heuristics of sampling every 2-4
locations (Fig. 2 B) allows experts to efficiently collect both
direct and indirect information while balancing sampling cost.

Based on the two hypotheses, the information reward, I , for
sampling n measurements at location l, can be modelled as:
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Fig. 2: Observed sampling strategy heuristics from human
responses (A, B), and hypothesized information reward models
to explain the observed heuristics (C, D). (A) Magic number
(i.e., the constant number of samples per location) distribution
from participants who chose to take a constant number of
measurements at each location in their initial strategy. (B)
Average location interval distribution from participants who
selected evenly-spaced sampling locations in their initial strat-
egy. (C) Model-predicted information reward for choosing
different number of samples per location. Blue represents
total information. Red represents the total sampling cost.
Yellow represents the net reward, computed as the information
(blue) minus the sampling cost (red). (D) Model-predicted
information reward for choosing different sampling location
intervals. Color scheme is the same as (C).

I(l, n) =
∑
ls∈Ls

Im · e
−δ√
n · e

−(l−ls)2

2β2 , (1)

where Im represents the complete amount of information
one could obtain from location l, ls represents a sampled
location, δ represents measurement noise, and β represents
the information inference decay factor. Here e

−δ√
n represents

the diminished information reward with increased number of
samples at the same location, whereas e

−(l−ls)2

2β2 represents the
reduced inferred information reward with increased distance
between location l with the sampled location, ls.

Model predictive success. To test the information reward
model, we compute the distribution of I among all possible
sampling locations, and compare the locations with large
information reward with human expert’ actual sampling lo-
cation choices. Fig. 4 shows that with the highly-simplified
information reward function (Eqn. 1), the robot-predicted high-
information-reward locations (Fig. 4, blue) matches closely
with experts-selected locations at low information level (i.e.,
total information < 60%). However, at higher information
level, the information based reward fails to capture experts’

sampling strategies. This suggests experts dynamically update
their sampling objective and priority in response to incoming
data, with the objective to effectively increase the amount
of information coverage only initially driving data collection
behavior.

V. EXPERTS’ SAMPLING STRATEGY ADAPTATION IS
HYPOTHESIS VERIFICATION ORIENTED AND DISCREPANCY

DRIVEN

To investigate what other objectives drive experts’ data
collection behavior, particularly at high information coverage,
we examined their reported hypothesis beliefs (measured by
subjective confidence). Once experts collected a sufficient
amount of initial information, they began to report specific be-
liefs towards the given hypothesis (Fig. 3 A), and their reported
beliefs exhibited a strong relationship to the amount of dis-
crepancy between their collected measurements and the given
hypothesis: when discrepancy between the data and hypothesis
was high, experts reported low confidence in hypothesis, and
when discrepancy was low they reported higher confidence
(Fig. 3 B). Based on this observation, we hypothesize that
once experts have formed an initial belief towards the given
hypothesis – either supporting or not supporting – their data
collection decisions are driven by an objective to further verify
this belief.

The potential discrepancy between measurement and hy-
pothesis one may observe if they were to sample at location,
l, can be modelled as:

D(l) =
∑
m

∑
y

P (m|l)P (y|m) |Hy − y| , (2)

where Hy represents the expected shear strength based on the
given hypothesis. P (y|m) represents the probability of getting
a specific shear strength measurement value, y, given moisture
m. P (m|l) represents the probability of getting a moisture
measurement within the range, m, at location l.

Model predictive success. To test our hypothesis that sam-
pling strategy at high information level is discrepancy driven,
we compute the distribution of D among all possible sampling
locations. For experts holding the belief that their measure-
ments do not support the given hypothesis, the robot predicts
sampling locations with maximal potential discrepancy:

Rinvalidate = argmax
l

(D(l)), (3)

For experts holding the belief that their measurements do
support the given hypothesis, the robot predicts sampling
locations with minimal potential discrepancy:

Rvalidate = argmin
l

(D(l)) (4)

Fig. 4 shows that predictions using the discrepancy reward
functions (Eqn. 3, 4) successfully captured sampling location
choices for more than 70% of human experts. In addition,
the high prediction rate of information reward function (Fig.



Fig. 3: (A) Experts’ confidence in specific beliefs – either
supporting (blue) or not supporting (green) – towards the given
hypothesis increases with the increase of information level.
VC, MC, SC, NI, NC stands for Very confident, Moderately
confident, Slightly confident, No information, and Not confi-
dent. (B) Expert-reported beliefs towards the given hypothesis
are related to the discrepancy between their measurements and
the given hypothesis. Blue represents supporting and green
represents not supporting.

4B, blue) at lower information coverage (i.e., total information
< 60%), and the high prediction rate of discrepancy reward
function (Fig. 4, red) at high information coverage (i.e., total
information > 60%), reveals a transition from an information
coverage oriented objective to a hypothesis verification ori-
ented objective as the level of information increased.

The strikingly high prediction rate of the extremely simple
model reflects the success of our approach informed by the
study of expert human behavior. Going forward, our find-
ings will help enable the development of more cognitively-
compatible robots teammates that can infer human experts’
abstract objectives to better support exploration and under-
standing of complex earth environments vulnerable to deserti-
fication processes compounded by the effects of anthropogenic
global climate change.

REFERENCES

[1] H.-O. P. Mbow, A. Reisinger, J. Canadell, and P. O’Brien, “Special
report on climate change, desertification, land degradation, sustainable
land management, food security, and greenhouse gas fluxes in terrestrial
ecosystems (sr2),” Ginevra, IPCC, vol. 650, 2017.

[2] S. Veron, J. Paruelo, and M. Oesterheld, “Assessing desertification,”
Journal of Arid Environments, vol. 66, no. 4, pp. 751–763, 2006.

Fig. 4: Accuracy of robot-predicted sampling locations based
on the information reward (blue) and discrepancy reward
(red). (A) Histogram of the prediction accuracy. (B) Prediction
accuracy at different information coverage levels. Information
reward (blue) captures human sampling behaviors at lower
information level, whereas discrepancy reward (red) captures
sampling behavior at higher information level.

[3] U. Saranli, M. Buehler, and D. E. Koditschek, “Rhex: A simple and
highly mobile hexapod robot,” The International Journal of Robotics
Research, vol. 20, no. 7, pp. 616–631, 2001.

[4] F. Qian, D. Jerolmack, N. Lancaster, G. Nikolich, P. Reverdy, S. Roberts,
T. Shipley, R. S. Van Pelt, T. M. Zobeck, and D. E. Koditschek, “Ground
robotic measurement of aeolian processes,” Aeolian research, vol. 27,
pp. 1–11, 2017.

[5] F. Qian, D. Lee, G. Nikolich, D. Koditschek, and D. Jerolmack, “Rapid
in situ characterization of soil erodibility with a field deployable robot,”
Journal of Geophysical Research: Earth Surface, vol. 124, no. 5, pp.
1261–1280, 2019.

[6] G. Picardi, M. Chellapurath, S. Iacoponi, S. Stefanni, C. Laschi,
and M. Calisti, “Bioinspired underwater legged robot for seabed
exploration with low environmental disturbance,” Science Robotics,
vol. 5, no. 42, p. eaaz1012, 2020. [Online]. Available: https:
//www.science.org/doi/abs/10.1126/scirobotics.aaz1012

[7] C. G. Wilson, F. Qian, D. J. Jerolmack, S. Roberts, J. Ham,
D. Koditschek, and T. F. Shipley, “Spatially and temporally distributed
data foraging decisions in disciplinary field science,” Cognitive Re-
search: Principles and Implications, vol. 6, no. 1, pp. 1–16, 2021.

[8] W. D. Neys, “Dual processing in reasoning: Two systems but one
reasoner,” Psychological science, vol. 17, no. 5, pp. 428–433, 2006.

[9] J. S. B. Evans and K. E. Stanovich, “Dual-process theories of higher
cognition: Advancing the debate,” Perspectives on psychological science,
vol. 8, no. 3, pp. 223–241, 2013.

[10] T. S. Braver, “The variable nature of cognitive control: a dual mech-
anisms framework,” Trends in cognitive sciences, vol. 16, no. 2, pp.
106–113, 2012.

[11] C. G. Wilson, C. E. Bond, and T. F. Shipley, “How can geologic decision
making under uncertainty be improved?” Solid earth, pp. 1–34, 2019.

[12] J. S. B. Evans, “In two minds: dual-process accounts of reasoning,”
Trends in cognitive sciences, vol. 7, no. 10, pp. 454–459, 2003.

https://www.science.org/doi/abs/10.1126/scirobotics.aaz1012
https://www.science.org/doi/abs/10.1126/scirobotics.aaz1012

	Using robots to study desertification and global climate interactions
	Moving robot field assistants towards more intelligent teammates
	Assessing expert scientist data collection behavior in simulation
	Experts' initial sampling strategy is exploration oriented and heuristic driven
	Experts' sampling strategy adaptation is hypothesis verification oriented and discrepancy driven
	References

